

Fetal Exposure to Synthetic Oxytocin and Relationship with Prefeeding (PF) Cues Within One Hour Postbirth Bell, Aleeca, PhD, RN, CNM (UIC College of Nursing); Rankin, Kristin, PhD (UIC School of Public Health); & White-Traut, Rosemary, PhD, NR, FAAN (UIC College of Nursing)

University of Illinois at Chicago, Center for Clinical and Translational Science

Purpose	Methods	Methods			Results		
We introduce a new coding schema of prefeeding (PF) cues to explore whether fetal	 Subjects Convenience sample of 47 	Infant Characteristic	Pitocin (<i>n</i> = 36)	No Pitocin (<i>n</i> = 11)	PF Cue (Value)	% of Infants with Observed Type of Cue (N = 47)	# of Epochs (Range = 0-60) Cue was Observed per Infant Mean (SD)
exposure to synthetic oxytocin	healthy full-term infants	Sex (% male)	61	64	Mouthing or Rooting (1)	93.6	25.0 (12.7)
(Pitocin) during labor is	 36 exposed to Pitocin,11 not 	Black (%)	48	55	Tonguing (1)	93.6	18.6 (12.4)

associated with the infant's level of prefeeding organization shortly after birth.

Definition of PF Cues

Self-regulating oral-motor behaviors that communicate feeding readiness and the ability to self-comfort. Soon after birth, they are goal-directed neurobehavioral tasks to seek, find, and begin sucking on the mother's nipple.

 Exclusion criteria: fetal distress, vacuum/forceps, cesarean, low APGAR

Procedure

exposed to Pitocin

- Infants were videotaped for 5 min (45-50 minutes postbirth)
- Coded for frequency of PF cues every 5 secs (total 60 epochs) (Cagan, J. Dissertation, 1993)
- Inter-rater reliability 90% (mean) .72 kappa (median)

Latino (%)	44	46
Other Race/Ethnicity (%)	8	0
Gestational age wks (mean ± SD)	39.6 ± 1.0	39.4 ± 1.2
Birthweight kg (mean ± SD)	3.5 ± 0.5	3.0 ± 1.9
Duration of labor hrs (mean ± SD)	11.6 ± 4.5	8.7 ± 4.6
Epidural (% yes)	72.2	45.5
Pitocin total mU dosage median (25th-75th percentile)	2015 (549 - 5359)	_

Empty sucking (1)	93.6	16.0 (11.2)
Brief hand to mouth (1)	78.7	7.0 (6.2)**
Hand swipes at mouth (1)	76.6	5.4 (5.4)
Sustained hand to mouth (no sucking) (2)	72.3	9.7 (11.9)**
Sucking on tongue (1)	53.2	2.8 (5.6)
Sucking on hand (3)	53.2	9.5 (15.5)

E 40

d 30

20

** p<.05, Crude Poisson regression models showing lower incidence of these PF cues in infants exposed to Pitocin versus unexposed

Multivariable Binary Logistic Regression

Showed that infants exposed to Pitocin were at 11.5 times (95%) CI: 1.8-73.3) the odds of exhibiting low/medium versus high levels of PF organization compared to unexposed infants

Mouthing

DESCRIPTION, RANK, & VALUE OF PF CUES

Tonguing

Background

- Exposure to labor pain medication, gastric suctioning, & early infant bathing has altered the frequency and emergence of PF cues soon after birth.
- It is unknown whether Pitocin exposure (to induce or augment labor contractions) can alter infant PF cues.
- Animal data suggest caution in exposing pups to high dosage synthetic oxytocin due to potential effects on endogenous

Level of PF Organization

 Assigned a theoretically-driven weight (rank) to each PF cue of 1 low, 2 medium or 3 high -(Brazelton & Nugent, NBAS) Manual, 1995)

Hand to mouth (no sucking)

- Constructed a score summarizing level of PF organization across 60 epochs:
- Several PF cues may co-occur in each epoch, but only the highest value of PF cue was selected and summed over the 60 epochs

PF Cue	Description	Rank/Value
Mouthing or Rooting	Mouth opens (no crying or yawning) with or without simultaneous head turn	Low = 1
Tonguing	Tongue darts out of mouth beyond inner lip	Low = 1
Sucking on tongue	Audible sound as tongue leaves roof of mouth generating a sucking movement	Low = 1
Empty sucking	Pressure appears to be generated with empty sucking movements & closed mouth	Low = 1
Hand swings	Fleeting hand to	

(after adjusting for duration of labor and epidural).

Low Medium High Low Medium High

Prefeeding Organization Level

Conclusions

- Newborn neurobehavioral cues may be sensitive to Pitocin exposure during labor.
- Our novel operational measure of PF organization may aid in quantifying self-regulation.
- It is unknown if our findings point to a direct or indirect drug effect.

Future Research Questions

In a larger study, does Pitocin adversely affect PF organization and for how long?

Sucking on hand

Funding

This project was supported by an **Irving B. Harris Foundation Post Doctoral Fellowship**.

oxytocin (Connelly et al, Society for Neuroscience, Poster, 2011)

Endogenous oxytocin is known to regulate many systems supporting early neurodevelopment, and is neuroprotective against mild hypoxia during labor.

UIC CENTER FOR CLINICAL AND UNIVERSITY OF ILLINOIS AT CHICAGO TRANSLATIONAL SCIENCE

> Score ranged 0 - 180Right skewed distribution Created tertiles of low (13-44), medium (45-89), & high (90-171) level of PF organization

 Analyzed by level of PF organization.

Hand swipes mouth contact < 1 Low = 1at mouth Sec Hand to mouth Brief hand to contact is 1-2.5 Low = 1mouth Sec Hand to mouth Sustained Medium = 2contact is > 2.5hand to mouth (no sucking) Sec Sucking on Sucking on any High = 3part of the hand hand

Is PF organization a reliable predictor of:

early self-regulation?

breastfeeding initiation and continuation?

Feeding readiness? > weight gain?

Dissemination of findings is supported by the **National Center** for Research Resources, and the **National Center for Advancing Translational Sciences, National Institutes of Health**, through Grant KL2RR029878. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.