
Volume 1 Issue 1
January 2012

Communication
Design
Quarterly

Online First
2019

Published by the Association for Computing Machinery
Special Interest Group for Design of Communication
ISSN: 2166-1642

Communication Design Quarterly, Online First

https://sigdoc.acm.org/publication/

How Developers Use API Documentation:
An Observation Study

Published Online January 29, 2019

CDQ 10.1145/3274995.3274999

This article will be compiled into the quarterly publication and archived in the ACM Digital Library.

Michael Meng
Merseburg University
of Applied Sciences
michael.meng@hs-merseburg.de

Stephanie Steinhardt
Merseburg University
of Applied Sciences
mail@steinhardt-dokumentation.de

Andreas Schubert
Merseburg University
of Applied Sciences
andreas.schubert83@gmail.com

https://dl.acm.org/citation.cfm?id=J1351

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
Communication Design Quarterly. ACM SIGDOC, New York, USA.
Copyright 2019 by the author.

How Developers Use API Documentation: An Observation Study

ABSTRACT
Application Programming Interfaces (APIs) play a crucial role in
modern software engineering. However, learning to use a new API
often is a challenge for developers. In order to support the learning
process effectively, we need to understand how developers use
documentation when starting to work with a new API. We report
an exploratory study that observed developers while they solved
programming tasks involving a simple API. The results reveal
differences regarding developer activities and documentation usage
that a successful design strategy for API documentation needs to
accommodate. Several guidelines to optimize API documentation
are discussed.

CCS Concepts
• Software and its engineering~Rapid application development

Keywords
API documentation, observation method, information design,
usability

Michael Meng
Merseburg University
of Applied Sciences

michael.meng@hs-merseburg.de

INTRODUCTION
When developing software, engineers routinely make use of
data and services provided by other applications via Application
Programming Interfaces (APIs, Myers & Stylos, 2016). Stylos
(2009) points out that many tasks require engineers to “stitch
together” functionality that existing APIs provide instead of
programming functionality from scratch (Stylos, 2009, p. 4). With
businesses and organizations using the Internet to expose data
and services, the importance of APIs has increased even more in
recent years. Learning the features of an API, the elements it offers
and how to combine these elements in order to bring a desired
functionality about is a common task every software developer
faces.

APIs are typically published along with API references, tutorials,
example projects and other resources designed to facilitate the
learning task (Mihaly, 2011). Still, getting into a new API often
is a challenge and insufficient learning resources (including API
documentation) have been described as a major factor contributing
to this challenge (Robillard, 2009; Robillard & DeLine, 2011).

This article contributes the results of an empirical study that
examined how developers use documentation when getting into
a new API. Our work is driven by the hypothesis that problems
with API documentation may in part reflect usability problems,
and in particular, that content and structure of the documentation
sometimes do not match the expectations and work habits of
developers. Consequently, for API documentation to be an effective
aid in learning an API, we need to know which general strategies
software developers adopt when solving programming tasks, which
information they need and which information resources they turn
to.

To address these issues, we conducted a study using the observation
method.1 We asked developers to solve a series of programming
tasks with an API that was unfamiliar to them. We then analyzed
which strategies they adopted to solve the tasks, which parts of the
API documentation they used, and which design features of the API
documentation led to problems. Based on our findings, we propose

Manuscript received April 23, 2018; revised October 4, 2018; accepted
November 16, 2018. Date of publication January 29, 2019.

CDQ 10.1145/3274995.3274999

Stephanie Steinhardt
Merseburg University
of Applied Sciences

mail@steinhardt-dokumentation.de

Andreas Schubert
Merseburg University
of Applied Sciences

andreas.schubert83@gmail.com

2 Communication Design Quarterly Online First, January 2019

several design guidelines that can help to make API documentation
more effective.

BACKGROUND
Research on API Documentation
Trying to understand the general strategies developers adopt
when solving programming tasks, their information needs and
information resources they turn to, has been an area of active
research in recent years (see Robillard & DeLine, 2011, and Meng,
Steinhardt & Schubert, 2018, for overviews).

Regarding general strategies, there is evidence that developers
follow different approaches when solving programming tasks with
a new API (Stylos & Clarke, 2007; Meng et al., 2018). Clarke
(2007) described these strategies in terms of three personas,
referred to as systematic, opportunistic and pragmatic developers.
While systematic developers approach an API top down and try to
develop a more thorough understanding of the API before turning
to the details of a task, opportunistic developers use a bottom-up
approach. They try to start coding immediately and search for
information, such as code examples, directly addressing the issue at
hand. The pragmatic developer combines elements of the top-down
and bottom-up approaches.

Regarding information needs of developers and information
resources they use, studies demonstrated that developers expect
standard quality criteria for technical documentation to apply to API
documentation as well, such as accuracy, clarity and completeness
(Uddin & Robillard, 2015; Watson, Stamnes, Jeannot-Schroeder
& Spyridakis, 2013). Developers strongly rely on API reference
information and code examples (McLellan, Roesler, Tempest &
Spinuzzi, 1998; Nykaza et al., 2002; Meng et al., 2018). They are
less willing to read documents that focus on conceptual information,
although conceptual information, such as background information
on the problem or domain addressed by the API, determines how
efficiently API documentation can be used (Jeong et al., 2009;
Ko & Riche, 2011). With respect to specific contents, it has been
argued that API documentation should provide a concise overview
of the overall purpose and the main features of the API to enable
quick orientation (Watson et al., 2013; Inzunza, Juárez-Ramírez &
Jiménez, 2018; Meng et al., 2018). Moreover, API documentation
has to provide scenarios that illustrate entry points into the API,
because identifying such entry points is a key problem in the initial
learning process (Robillard & DeLine, 2011).

Methods in API Documentation Research
Most previous studies relied on interviews, questionnaires or other
inquisitive methods such as diary studies (e.g. Inzunza et al., 2018;
Lutters & Seaman, 2007; Robillard & DeLine, 2011; Meng et al.,
2018; Uddin & Robillard, 2015; Sillito & Begel, 2013). While
these methods have proven useful and helped to generate important
findings, their dominance in research on API documentation
poses several challenges (Lethbridge, Sim, & Singer, 2005).
First, answers provided during interviews and in response to a
questionnaire rely on self-report and the ability of developers to
reflect on their work habits, the approach they take when solving a
problem or the deficiencies they see in the documentation they use.
This ability may vary greatly.

Moreover, answers in an interview or a questionnaire reflect what
developers say they do, but not necessarily what they actually
do. As discussed in Lethbridge et al. (2005), humans often do

not recall events around them, and they tend to remember events
that they find meaningful. In the same vein, it has been noted that
what developers say they do and what they actually do does not
necessarily coincide. For example, Lethbridge, Singer, & Forward
(2003) noted that the software engineers who participated in their
study claimed to spend approximately 40% of their time reading
documentation. However, the observation results showed that
only 3% of the logged events over the entire observation period
were in fact related to documentation. We conclude that existing
studies should be complemented by studies that do not rely on self-
report and directly observe activities of software developers while
working with an API.

THE OBSERVATION STUDY
Research Objectives
The goal of our study was to examine how developers use
documentation when they learn a new API and start using it
to solve programming tasks. To this end, we asked software
developers to solve a set of pre-defined tasks using a public API
unfamiliar to them on the basis of the documentation published by
the API provider. The API documentation included different types
of information resources, such as an API reference, a conceptual
overview and examples illustrating specific usage scenarios (see
below for more details). The research design was chosen to address
the following objectives:

• To analyze which information resources offered by the API
documentation developers use to which extent

• To characterize the strategies developers adopt when starting
to work with a new API

• To identify aspects related to content, content design or
content accessibility which hinder efficient task completion

Our study was exploratory in nature and not designed to test
specific hypotheses about documentation usage or programming
strategies. We took a qualitative approach that focuses on individual
observations and on patterns and trends that become apparent when
comparing observations across participants.

Method
Materials
The purpose of the API selected for our test is to connect Web shops
to shipping providers (http://www.shipcloud.io). The API serves as
a proxy that enables simple and uniform access to a broad range
of shipping providers and services. Using the API, shop owners
can create shipping labels, place pickup requests, define drop
authorizations, and much more. The API is based on the REST
(REpresentational State Transfer) paradigm. A REST API exposes
data through resources that are accessed using standard HTTP
requests such as GET, POST or DELETE (see Johnson, n.d., for a
nontechnical introduction to REST APIs). The shipcloud API uses
resources to represent e.g. shipments, addresses or pickup requests.
Via HTTP requests, these resources can be created, updated or
deleted.

API documentation is provided online on a developer portal (Figure
1). The documentation is structured in several content categories,
such as “Concepts” or “API reference,” which are described in
Table 1. Each content category is represented by a single page
which can be accessed via a top-navigation link. Complementing
the documentation, the developer portal contains additional links

Communication Design Quarterly Online First, January 2019 3

Figure 1: Welcome page of the developer portal for the API
used in our study. The screenshot illustrates layout and struc-
ture of the portal at the time of conducting the test (spring
2016). The different content categories (e.g. Concepts, API
reference, Recipes) can be accessed using tabs in the top level
navigation.

Table 1: Content categories of the API documentation used for
the test

and resources, for example to register for a developer account or to
access specific support services. The main shipcloud web site is
available in German and in English. The developer portal and the
API documentation are provided in English only which reflects
standard practice developers in Germany are used to. During the
test, participants had access only to the developer portal.

Participants
For the test, we recruited 11 developers (10 male, 1 female) as
participants from three different organizations: six participants
employed with a software company developing a standardized
e-commerce software product, three participants working for
a digital publishing company, and two participants from the
IT department of our university. Most participants associated
themselves with the job role “developer,” while two participants
currently work as team lead, and one participant as database
specialist (see Table 2). To recruit participants for our study, we
contacted the respective organizations, asked whether they would
be interested in supporting our study and requested volunteers.

The professional experience as developer varied from less than
a year to 25 years (mean = 9 years). All participants were native

speakers of German. Prior to solving the tasks, participants were
asked to rate their practical experience with REST APIs on a scale
ranging from 1 (= no experience) to 5 (= much experience). Only
one developer indicated to have no prior practical experience with
REST APIs, but confirmed that he knew the concepts and main
architectural assumptions. Mean rating was 3.4 (median = 3). None
of the participants was familiar with the API selected for the test.

Note that a sample of 11 participants is too small to warrant statistical
analyses, but as we stated above, testing specific hypotheses
was not the goal of this study. We believe that the sample size is
sufficiently large to collect an interesting range of observations as
part of a qualitative analysis, and is also sufficiently large to reveal
trends and relations in the quantitative data. We will return to this
issue when we discuss potential threats to validity below.

Procedure
Prior to the test, statement of consent was obtained from each
participant. As part of the instruction starting each session,
participants were told that the test was conducted to observe how
developers would approach tasks with an API unfamiliar to them.
Participants received a brief explanation of the purpose of the API.
Afterward, a questionnaire was administered to obtain participant
data on age, gender, professional experience and experience with
REST APIs. Participants then had to solve the programming tasks
developed for the test. When finished with the tasks, a second
questionnaire was provided which asked participants to rate the
quality of the API documentation in general, and the structure
of the documentation in particular, both on a scale ranging from
1 (=good) to 5 (=bad). Also using a 5-point scale, participants
were to indicate whether they had problems with the fact that
documentation was provided in English (1=no problems, 5=many
problems). Moreover, participants were asked to comment freely
on aspects they liked about the documentation, weaknesses they
noticed as well as suggestions for improvement. Participants were
debriefed, which ended the session.

For the test, five tasks were developed in collaboration with the API
provider. The tasks involved various parts of the API, including
creating shipping labels for specific shipments (such as return
shipments, shipment with same-day delivery), requesting pickup
of shipments at pre-defined time slots, as well as using special
addresses for delivery, such as dedicated drop stations. For all tasks,
the API documentation provided a correct solution. According to
the API provider, the tasks were of medium difficulty.

Solving the tasks did not involve actual programming, but rather
the configuration of specific HTTP requests that had to be sent to
the API service. To arrive at a correct solution, participants had to
determine the type of request (POST or GET), the endpoints to use
in order to get access to the correct API resource, and parameters to
be submitted with the request. In addition, some tasks also required
participants to identify and manipulate payload information to be
transmitted with the request. This payload information could be
provided in two different notations: using URL syntax or using
JSON (JavaScript Object Notation). To assemble and submit the
requests and to inspect the response returned by the API, participants
had access to a simple Command Line Client for transferring URL
data (cURL) and to a REST client (Postman), which they were free
to use depending on their preferences. Both options were offered
since the code examples in the API documentation sometimes
used JSON and sometimes cURL commands to illustrate payload
information.

4 Communication Design Quarterly Online First, January 2019

Tasks were given to the participants in written form on paper. All
tasks were formulated in German. Participants were free to use the
API documentation at any point they wanted, but they were not
specifically encouraged to do so. For later analysis, screencasts
(including audio) were recorded. In addition, the participants’
eye movements were registered using an REDm eye tracker
(SensoMotoric Instruments, SMI) that was attached to the laptop
monitor. The REDm eye tracker operates in head-free mode. Hence,
participants were allowed to move their heads when working on the
tasks. We expected overall data quality to vary greatly from session
to session, as we did not want to restrain the seating position of
participants too much in order to enable them to work as naturally
as possible. For this reason, no attempts were made to analyze the
eye tracking data in detail, for example by using dedicated areas
of interest. However, we expected the eye tracking data still to be
useful as a tool to support the qualitative analysis.

The test sessions were run on-site at conference rooms provided
by the respective partner companies or the university. Two
researchers were present in each session. One researcher took
care of the technical setup, started the screencast and eye tracking
recordings, and monitored data recording during the session. The
other researcher instructed the participants, answered questions
and took notes. Test sessions lasted between 40 to 70 minutes. Due
to organizational restrictions, test sessions had to be terminated
after 70 minutes regardless of whether participants had already
completed all tasks.

Data analysis
Two lines of data analysis were pursued. On the one hand,
screencast videos were coded directly. Coding the screencast videos
provided the basis for obtaining quantitative data, such as the total
time required to complete a task and the time participants used a
specific part of the documentation. In addition, verbal protocols of
participant activities during the test were prepared which served as
the basis for the qualitative analysis.

Coding of screencast videos was done using the INTERACT
video analysis software (Mangold International, version 15). Two
different coding schemas were applied, “task” and “active element.”

• The coding schema “task” was used to mark the beginning
and the end of each task. Hence, five different values were
used in this schema for tasks 1 to 5. The coding schema “task”
provided the basis to gather general information on task
success and time needed to execute the tasks.

• The coding schema “active element” was used to assess
which parts of the API documentation participants accessed
during task execution. The codes marked intervals in which a
specific page or window was active on the screen. The value
“Editor & Client” marked all intervals in which participants
worked in a window outside the documentation, such as
Postman or the Command Line Client. Six additional values
were used that captured the content categories offered by the
API documentation: Welcome page, Integration, Concepts,
Samples, Recipes, and API reference.

The coding schemas were applied in separate coding runs. Each
video was coded once and all coding was done by a single
researcher. Prior to coding, we jointly defined criteria for assigning
the individual code values.

The verbal protocols for the test sessions were prepared using
standard spreadsheet software. Protocol notes were based on post-
hoc inspection of the screencast videos. The protocols included
observable activities such as performing a search, scrolling up and
down a page, copying a code example, writing code or submitting
a request to the API. Protocol entries were added in chronological
order and assigned a time stamp. The session protocols were also
used to store comments made by the test participants during or after
the test, points at which participants requested help as well as any
additional observations noted during the test.

Results: Quantitative Findings
The quantitative analyses addressed two goals. First, we looked at
measures that inform us about overall task execution (success on
tasks, time on tasks) and appreciation of the API documentation.
The second goal was to examine the time participants spent in the
different parts of the documentation.

Success on tasks
Of the 11 developers participating in our study, eight developers
solved all five tasks in the 70-minute period available for each
session. The other three developers solved only tasks 1–3. While
P3 solved only 3 tasks due to technical reasons, participants P7 and
P8 were not finished after 70 minutes due to the difficulties they
experienced with the tasks.

Questionnaire data
After completing the tasks, participants were asked to rate the
overall quality of the documentation and the structure of the
documentation on a 5-point scale (1=very poor, 5=very good). The
mean rating for the overall quality of the documentation was 2.9
(median: 3), the mean rating for the structure of the documentation
was 2.5 (median: 2). We infer that satisfaction with the overall
quality of the documentation and its structure was only moderate.

Participants were also asked to indicate whether it was difficult
for them to read the documentation in English although their first
language was German. Again, a scale was used, ranging from 1 (no
problems) to 5 (many problems). Mean on this question was 1.7
(median: 1). This indicates that most participants felt comfortable
with the language of the documentation.

Time on tasks
In order to assess efficiency of task execution, we calculated mean
times per task across all participants and for each participant
individually. This approach was chosen in order to take care of the
fact that three developers only solved three instead of all five tasks.

Table 2: List of participants and participant properties

Communication Design Quarterly Online First, January 2019 5

The overall mean time per task was 695 seconds (SD = 282).
However, as shown in Figure 2, there was considerable variation
between participants. As the pattern suggests, participants can be
roughly divided in two groups: the “fast performers” (P3-6, P10)
and the “slow performers” (P1-2, P7-9, P11).

The time needed by the developers to execute the test tasks does not
seem to depend on general developer experience. For example, P3
and P10 have both more than 10 years of professional experience
and solved the tasks rather quickly. On the other hand, P2, P8 and
P9 who are similarly experienced required significantly more time
to complete the tasks.

A factor that seems to affect the efficiency of task execution is
e-commerce experience. All participants that solved the tasks
rather quickly currently work in the field of e-commerce, but only
one of the participants from the “slow performers” group. Given
that the API we selected for our test is designed to be used in Web
shops and related e-commerce applications, the participants of the
fast group probably took advantage of background knowledge that
they could transfer to the test API. The observation that relevant
domain knowledge is an important factor that influences how easy
it is for developers to get into a new API fits well with conclusions
on the role of domain-related background knowledge reached in in
other studies such as Jeong et al. (2009), Ko and Riche (2011) and
Meng et al. (2018).

Usage of documentation and content categories
On average, participants used API documentation about 49% of the
time (Min: 31%, Max: 68%). A breakdown by participant revealed
that there is only little individual variation, with the means for all
but two participants ranging between 41% and 56%.

Table 3 shows the proportion of time participants spent in differ-
ent content categories of the API documentation, such as “Con-
cepts,” “Samples” and “Recipes,” and the proportion of time spent
outside the documentation, for example in order to work on the
assigned tasks using Postman or the Command Line Client.

The content category referred to most often is the API reference,
followed by the Recipes page. When aggregating the times for
Recipes and Samples, which both present code examples for basic
use cases in a cook book-like fashion, both content categories
together are head to head with the API reference and were active
about 21% of the total time. On the other hand, the Concepts page
is used as well, but less often compared to the API reference and the

pages containing code examples. These findings show that the API
reference is an important source of information, not only to solve
specific programming issues when working with an API developer
already have some experience with, but even in the initial stages
of getting into a new API, in line with Meng et al. (2018). The
findings also confirm the importance of code examples during the
initial learning process, in line with results reported in McLellan et
al. (1998), Shull, Lanubile, and Basili (2000), Nykaza et al. (2002)
and Stylos, Faulring, Yang, and Myers (2009).

Usage of content categories by participant
As final part of the quantitative analysis, we calculated the
proportion of time each participant spent on the different content
categories such as “Concepts,” “Samples” or “API reference,”
relative to the total time they spent on documentation-related
page elements. To facilitate analysis, we reduced the number of
categories. First, we aggregated the times for the content categories
“Samples” and “Recipes,” which are very similar in that they both
contain code examples for basic use cases. Furthermore, times for
“Welcome page” and “Integrations” were collapsed as well. As
discussed above, both content categories do not contain information
relevant to the test tasks and were therefore hardly ever used by
the participants. Table 4 shows the mean values by participants for
the resulting categories “API reference,” “Concepts,” “Examples”
(Samples + Recipes) and “Other” (Welcome page + Integration).

As stated above, participants spent about 49% of the test time using
documentation. However, as Table 4 reveals, there is considerable
variation between participants with respect to the time they allocate
to individual content categories. In particular, participants differ
in whether they use information from the Concepts page or not.
The values for P1, P2, P4, P5 and P6 range between 0% and 5.6%,
whereas values for the other 6 participants range from 12.5% to
42.9%. Hence, while some participants, such as P1, P2 and P4,
tend to completely ignore the Concepts page and rely more on API
reference and content categories providing code examples, there
is another group of participants, including for example P7, P8 and
P10, that seems to use the Concepts page more extensively.

Whether the Concepts page is used does not seem to depend on
overall developer experience or the availability of domain-related
background knowledge. For example, P3, P7 and P8 are developers
with 10 or more years of professional programming experience,
and they all seem to resort to the Concepts page rather often. On the
other hand, P2 and P9 are on a similar experience level, but belong

Table 3: Proportion of time spent outside the documentation
(Editor & Command Line Client) and on different content
categories within the documentation

Figure 2: Mean time per task required by participants to
execute the test tasks

6 Communication Design Quarterly Online First, January 2019

to the group of participants that tends to ignore information on the
Concepts page.

Results: Qualitative Findings
Besides the quantitative findings discussed in the previous sections,
we obtained a number of qualitative findings that were based on
an analysis of the verbal protocols for the test sessions. The
qualitative analysis focused on the general strategies adopted by
the participants to solve the tasks and on barriers and obstacles that
hindered efficient task completion.

Opportunistic versus systematic approach to
programming
With respect to the general strategies adopted by the participants
in order to solve the tasks, two groups emerged that seem to
match the opportunistic and the systematic developer personas
discussed in Clarke (2007). We found some developers (P2, P3,
P9, P10) to develop the solutions for the test task in an exploratory
fashion, which Clarke (2007) discusses as a characteristic feature
of programmers taking an opportunistic approach. We note that
these developers worked in a more intuitive manner and seemed
to deliberately risk errors. They often tried solutions without
double-checking in the documentation whether the solutions were
correct. For example, P10 changed parameter values to values that
seemed to match based on experience with similar problems, but
he did not check in the documentation whether the values were
actually correct or even existing. P2 inserted parameters that he
had noticed at some point in the documentation before, but did
not attempt to re-consult the relevant section of the documentation
to make sure that the parameters were spelled correctly. In many
cases, developers from this group did not follow the processes and
suggestions described in the documentation.

We found that opportunistic developers in our test started the first
task with some example code from the documentation which they
then modified and extended. Once a task was completed, the piece
of code that solved the task was used as starting point for the next
task, which again was a potential source of error. Developers in
this group worked in a highly task-driven manner, but also tried
things that were not related to the task, but possibly helped them to
build a broader understanding of the API in passing. For example,
P9 submitted a request for a UPS service (United Parcel Service)
which was not required by any of the tasks, simply in order to see
what would happen.

We noted that developers which we assigned to the opportunistic
group did not take time to get a general overview of the API before
starting with the first task. They scrolled briefly through some pages
of the documentation, checked the tools available and then started
with the first task. Developers from the opportunistic group wanted
fast and direct access to information. They did not systematically
read larger sections of the documentation, but typically searched for
a specific piece of information and then scanned the documentation

in order to find it, sometimes in a very coarse-grained manner. For
example, P2 jumped from page to page searching for a particular
piece of information without some sort of search strategy becoming
apparent. The exploratory, intuitive and active approach taken
by the opportunistic developers bears many similarities with the
exploratory and active approach described by John Carroll and
colleagues in several studies observing how novice users learn to
work with a computing system (see Carroll, 1990, for a detailed
review).

In contrast to the opportunistic approach, another group of
developers (P4, P5, P7, P8) seemed to follow a strategy that fits
the systematic approach discussed by Clarke (2007). According
to Clarke, systematic developers write code defensively and try to
get a deeper understanding of a technology before using it. In our
test, we note that these developers took some time to explore the
API and to prepare the development environment before starting
with the first task. Moreover, they took some time to get a general
orientation. For example, P7 and P8 studied some sections in the
documentation, then sent a GET request to the API and analyzed
the response to check whether the request-response process worked
as expected.

The systematic developers in our test started every task with a
clean piece of code that was selected from the code examples in the
documentation. They then used the examples on the Samples and
Recipes pages as well as the API reference to modify the piece of
code they started with in a systematic manner. Interestingly, they
seemed to use a similar process to solve each task. Before starting
a task, they would form hypotheses about the possible approach
and (if necessary) clarify terms they did not fully understand.
With respect to documentation usage, we also noted that they
read sections of the documentation and code samples which were
regarded relevant more carefully. In general, they attempted to
follow the proposed processes and suggestions closely.

We also observed that the systematic developers apparently noticed
parts of the documentation that were not directly relevant to the
current task. However, when the information became relevant at a
later point, they sometimes remembered that they had come across
a section that was potentially relevant which they then tried to
relocate.

Note that our classification of participants as opportunistic
or systematic developer does not seem to predict general
programming experience or the availability of domain-related
background knowledge. For example, the developers we assume
to have followed a systematic approach include experienced (P7,
P8) as well as less experienced developers (P4, P5), and developers
working within (P4, P5) or outside the e-commerce domain (P7,
P8). Moreover, the strategy a developer follows does not seem to
predict a tendency towards using information from the Concepts
page in our test. We classified P4 and P5 as following a systematic
approach, but both participants ignored the Concepts page almost
completely. On the other hand, P3 and P10 which followed
an opportunistic approach made extensive use of information
presented on the Concepts page.

Barriers and obstacles
Based on the verbal protocols and comments made by participants
after the test, a number of barriers and obstacles were identified that
hindered efficient task completion.

• Navigation. Some developers mentioned that the API

Table 4: Proportion of time (in %) spent on individual content
categories of the API documentation by participant

Communication Design Quarterly Online First, January 2019 7

documentation used in our test lacked a consistent system of
navigation aids, which sometimes led to the impression that
the documentation was incomplete. A particular problem
was that some pages, but not all, offered a side navigation
including within-page links. We observed several times that
developers wanted to go back to a certain piece of information
which they had noticed in the context of another task, but had
great difficulty doing so.

• High-level structure of the API documentation.
Several problems were related to the high-level structure of
the API documentation: the split of information in “Concepts,”
“Samples,” “API reference” and so on. When searching for
a particular piece of information, participants sometimes
found it difficult to decide which content category to select.
Typically, participants had no specific hypothesis whether
the information they were looking for would be located in
the Concepts, API reference, Samples section or somewhere
else. The distinction between the type of content provided in
“Samples” and “Recipes” was particularly unclear. Moreover,
using “API reference” as label for a content category was
mentioned to be misleading because this label suggests that
the respective section contains the entire documentation.

• Search. The lack of a search function was identified as
another barrier preventing more efficient task completion.
Developers often wanted to use search when they were
missing a particular piece of information, such as a term they
did not know. Since the API documentation used in our test
did not offer a dedicated search field, participants tried to use
simple page search instead. Since the content was distributed
over several pages, this strategy was often not successful.

• Reuse of code examples. Finally, we noted that
participants developed their own solution starting from some
sample code provided in the documentation, an observation in
line with other reports in the literature (Maalej, Tjarks, Roehm,
& Koschke, 2014; Kim, Bergman, Lau, & Notkin, 2005).
Efficient reuse of code examples was sometimes hindered
in our test due to the fact that the sample code contained
placeholders referencing some other code example. Using
placeholders eliminated redundancy across code examples,
but made it impossible to simply reuse the code via copy and
paste.

DISCUSSION AND IMPLICATIONS
Threats to Validity
When evaluating the results of our study, various aspects should
be kept in mind that pose potential threats to validity. Several
limitations result from the sample size of 11 developers tested.
As already emphasized above, we believe that the sample size is
sufficient to conduct a qualitative analysis and to reveal trends
and relations in quantitative data. Note also that various other
studies on API documentation that were performed in an industrial
context relied on similar sample sizes, such as Jeong et al. (2009,
N=8), Ko & Riche (2011, N=7), or Sillito & Begel (2013, N=10).
Nevertheless, studies using larger samples should be carried out as
follow-up in order to validate our findings.

A more general threat to validity relates to the observation method
used in our study. If participants know they are observed, it is
possible that they do not behave naturally anymore. For example,
in our case this could mean that participants spend more time in

the documentation than they would normally do. Again, follow-
up studies using different methods are necessary to address this
problem.

Note finally that our study focused on a single scenario for using
API documentation (starting to work with a new API) and used
a single API type (REST API). Whether our findings generalize
to other scenarios, such as solving routine task once developers
have become more experienced with an API or using the API
documentation for specific activities such as bug fixing, and
whether they also apply to other API types remains an open issue.

Implications for API Documentation Design
Despite these limitations, several general consequences for
content and design of API documentation can be derived that may
help to make documentation more efficient. We spell out these
consequences in terms of guidelines designed to enable efficient
access to relevant content, to facilitate initial entry into the API and
to support different development strategies.

Enable efficient access to relevant content
Designing API documentation should include specific measures to
facilitate effective access to content that is relevant to the task at
hand. These measures have to respect the fact that developers differ
with respect to the way they use documentation. We recommend
the following guidelines to make relevant content more accessible:

• Organize the content according to API functionality.
A first aspect concerns the high-level organization of the API
documentation. From the results of our study, we conclude
that API documentation should be structured according to
categories that reflect the functionality or content domain of
the API rather than using categories that signal the type of
information provided. Instead of dividing documentation into
“Samples,” “Concepts,” “API reference” and “Recipes,” the
API used in our study should be reorganized using categories
such as “Shipment Handling,” “Address Handling” and so on.
If developers experience a problem while working with the
API and turn to the API documentation to find information
that solves the problem, they are likely to know the content
domain of their problem (such as shipments or address
handling), but it is more difficult for them to predict whether
the information they are looking for is presented in the API
reference, in a section dedicated to presenting code examples,
or in a section discussing concepts. Note that this guideline
can be viewed as an application of the principle of minimalist
documentation according to which the components of the
documentation should reflect task structure (van der Meij &
Carroll, 1995).

• Present conceptual information integrated with
related tasks. Another aspect relevant in this respect concerns
the integration of conceptual information that developers
need in order to use the API successfully. Confirming
results reported in Meng et al. (2018), our study supports
the conclusion that developers vary with respect to whether
they use conceptual overviews that introduce important API
concepts in a systematic way. While some developers use
such offerings, others tend to ignore them. To reach both
groups of developers, conceptual information should not be
aggregated in a dedicated section or document that signals to
focus on conceptual information. We recommend presenting
conceptual information integrated with the description of

8 Communication Design Quarterly Online First, January 2019

tasks or usage scenarios where knowledge of these concepts
is needed. To give an example from the API used in our test,
information regarding the representation of a shipment should
be introduced in the section describing how to create a new
shipment, and specific features of a return shipment should be
provided in the section describing how return shipments are
handled.

• Provide a transparent navigation and a powerful
search function. Our study emphasizes the need for providing
appropriate means that enable efficient navigation through the
API documentation. Navigation aids should enable developers
to determine where in the documentation they currently
are, and what the context of the current topic is. On several
occasions, participants in our test remembered that they had
already come across some piece of information that was now
relevant, but often they were unable to return to the place
in the documentation due to inconsistent and incomplete
navigation options. Beyond transparent navigation, a
powerful search function should be offered. If implementing
a search function is not possible, e.g. for technical reasons, an
alternative strategy is to facilitate simple search by presenting
all information on a single page, instead of distributing the
information across different (though possibly linked) pages
(see Robillard & DeLine, 2011, for a similar proposal).

Facilitate initial entry into the API
The results of our study suggest that identifying appropriate entry
points into the API and relating particular tasks or usage scenarios
to specific elements of an API are key issues for successful API
learning, confirming findings from earlier research based on
interviews and questionnaires (see Robillard & DeLine, 2011,
Meng et al., 2018). The following measures can be taken to support
initial entry into a new API:

• Provide clean and working code examples. Special
attention should to be paid to the code examples included with
the API documentation. As we have observed, code examples
are an important resource both for initial learning and when
working towards the solution for a problem. Opportunistic
developers heavily rely on code examples to understand how
a specific API feature works. Moreover, both opportunistic
and systematic developers use code examples as starting
point when working toward the solution of a problem. In the
API documentation used in our test, reusing code examples
was hindered because the sample code often contained
placeholders to avoid redundancy, which led to problems.
Code example should be constructed very carefully. They
should demonstrate the intended use of the API and they need
to be complete and ready to be used via copy and paste.

• Provide relevant background knowledge. The
quantitative results of our study provided hints that developers
currently working in a company developing e-commerce
software were able to solve the tasks more efficiently. It seems
reasonable to assume that they took advantage of relevant
background knowledge when starting to work with our test
API which also addresses tasks related to e-commerce. As
discussed above, other studies have confirmed the importance
of background knowledge in the initial learning process as well
(Jeong et al., 2009; Ko & Riche, 2011). API documentation
should therefore provide background knowledge to facilitate
entry into an API for developers without prior experience in the

domain covered by the API. As with conceptual information
in general, domain-related background knowledge should also
be presented on-demand and integrated with the description of
tasks and usage scenarios in which this knowledge becomes
relevant.

• Connect concepts to code. A particular challenge for
developers is to infer how certain concepts map to elements
of the code. For example, the first task of our test required
developers to create a label for a return shipment. Developers
with background knowledge in e-commerce were more likely
to form the hypothesis that a special parameter was used to
mark a shipment as return shipment and not, for example, a
dedicated resource. This hypothesis turned out to be correct,
which greatly reduced efforts to identify the modifications
that had to be made to the code. Hence, whenever introducing
conceptual information, special efforts should be taken to
signal to the developers how concepts are represented in the
code by using appropriate code examples in which relevant
elements are highlighted.

Support different development strategies
Our study suggests that API documentation has to respect the
different strategies that developers adopt when approaching a new
API. Both the content and the way the content is presented have to
serve the needs of both opportunistic and systematic developers.
The following guidelines can be used to support both types of
developers:

• Enable selective access to code. Opportunistic
developers focus on code. This reemphasizes the need to enrich
API documentation with code examples that are complete and
comprehensive. Moreover, proper design strategies should
be used to clearly distinguish code examples from text,
thereby making it easier for opportunistic developers to jump
to relevant code examples directly. A design strategy that
ensures such a clear distinction is to use a separate column
for code examples that is aligned to the column containing the
text blocks referring to the code examples, a technique which
several popular API providers already use.

• Signal text-to-code connections. Specific efforts
should be taken to support switches from text to code.
Whenever the text refers to API elements such as methods or
parameters, developers will want to identify those elements
in the code example that accompanies the text. Therefore,
signaling techniques should be applied, such as color coding,
to highlight code elements both in the text and in the code
example (Mautone & Mayer, 2001).

• Provide important information redundantly. The fact
that opportunistic developers rely more heavily on code when
learning a new API creates the risk that they miss sections
in the API documentation that present critical pieces of
conceptual information, including relevant domain-related
background knowledge. This risk prevails even in case the
conceptual information is presented in an integrated way,
as part of describing tasks in which the concepts become
relevant, because opportunistic developers are likely to skip
the text and to focus on the code example that complements
the text. This calls for an approach that presents critical pieces
of conceptual information redundantly, e.g. integrated into the
text describing how a certain task is handled with the API,
but also (if possible) directly integrated into the source code

Communication Design Quarterly Online First, January 2019 9

by using code comments. Such an approach can help to make
sure that opportunistic developers process this conceptual
information even if they skip the text and focus on the code.

• Enable fast use of the API. Both opportunistic and
systematic developers want to start using the API very soon
after they begin dealing with a new API. In our study, the
developers following an opportunistic strategy attempted
to start with the first task almost immediately. In contrast,
systematic developers took more time to get an overview of
the API, but also got active early on, e.g. by trying sample API
calls. Hence, for both types of developers, attempts should be
made to enable fast use of the API, reemphasizing calls for
an action-oriented approach to documentation advocated in
the tradition of minimalism (van der Meij & Carroll, 1995).
Possible strategies to enable fast use of the API are to provide
code examples that can be used to generate sample API calls
and to integrate try-out functions that developers can use to
submit requests to the API directly and to inspect the response
returned by the API.

CONCLUSIONS
Existing research on the information needs of software developers
learning new APIs and the information resources they turn to relies
to a large extent on inquisitive techniques such as interviews or
questionnaires. The current study was undertaken to complement
existing research with data collected through observing activities
of developers while they attempt to solve first tasks with a new
API. The results confirm and further substantiate findings from
earlier research, thus contributing to a more solid empirical base
on which design strategies to optimize API documentation can be
based. Several guidelines proposing such design strategies have
been discussed.

The results reported here and the design guidelines we proposed
open several pathways for future research. A first step could be to
examine whether API documentation that is optimized on the basis
of our guidelines indeed leads to observable performance benefits
when starting to work with a new API, such as shorter time on
tasks and higher task accuracy. If such effects can be demonstrated,
follow-up studies should address the contribution of individual
design decisions and possible interactions of these design decisions
with the different strategies developers can adopt. Moreover,
research providing a more fine-grained analysis of the information
units, such as text versus code examples, which developers
attend to when using a certain section of the documentation also
has the potential to further enhance our understanding of API
documentation usage.

ENDNOTES
1. This research was supported by the German Federal Ministry of

Education and Research, and anonymous reviewers agreed that
the study’s presentation of methods met expectations of ethical
research design, clear communication with participants, and
informed consent.

NOTES
Michael Meng, Stephanie Steinhardt, Andreas Schubert, Fachbereich
Wirtschaftswissenschaften und Informationswissenschaften,
Hochschule Merseburg.

Correspondence concerning this article should be addressed

to Michael Meng, Hochschule Merseburg, Fachbereich
Wirtschaftswissenschaften und Informationswissenschaften,
Eberhard-Leibnitz-Straße 2, D-06217 Merseburg, Germany.

We would like to thank the two anonymous reviewers for helpful
comments and suggestions for improvement.

The work reported here has been supported by the German Federal
Ministry of Education and Research (BMBF), FHprofUnt, grant
13FH014PX4 to Michael Meng.

All images published with permission.

REFERENCES
Carroll, J. M. (1990). The Nurnberg funnel: Designing minimalist

instruction for practical computer skill. Cambridge, MA:
MIT Press.

Clarke, S. (2007). What is an end user software engineer? In
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. Retrieved from http://drops.dagstuhl.
de/opus/volltexte/2007/1080/, checked on 04/18/2018.

Inzunza, S., Juárez-Ramírez, R., & Jiménez, S. (2018). API
documentation: A conceptual evaluation model. In World
Conference on Information Systems and Technologies,
229–239. Springer, Cham.

Jeong, S. Y., Xie, Y., Beaton, J., Myers, B. A., Stylos, J., Ehret, R.,
& Busse, D. K. (2009). Improving documentation for eSOA
APIs through user studies. In International Symposium on
End User Development, 86–105. Berlin: Springer.

Johnson, T. (n.d.): What is a REST API? [blog post]. Retrieved
from https://idratherbewriting.com/learnapidoc/docapis_
what_is_a_rest_api.html, checked on 10/01/2018.

Kim, M., Bergman, L., Lau, T., & Notkin, D. (2004). An
ethnographic study of copy and paste programming practices
in OOPL. In Empirical Software Engineering, 2004.
ISESE’04. Proceedings. 2004 International Symposium ,
83–92. IEEE.

Ko, A. J., & Riche, Y. (2011). The role of conceptual knowledge
in API usability. In Visual Languages and Human-Centric
Computing (VL/HCC), 2011 IEEE Symposium, 173–176.
IEEE.

Lethbridge, T. C., Sim, S. E., & Singer, J. (2005). Studying
software engineers: Data collection techniques for software
field studies. Empirical Software Engineering, 10(3),
311–341.

Lethbridge, T. C., Singer, J., & Forward, A. (2003). How software
engineers use documentation: The state of the practice. IEEE
Software, 20(6), 35–39.

Lutters, W. G., & Seaman, C. B. (2007). Revealing actual
documentation usage in software maintenance through
war stories. Information and Software Technology, 49(6),
576–587.

Maalej, W., Tjarks, R., Roehm, T., & Koschke, R. (2014). On
the comprehension of program comprehension. ACM
Transactions on Software Engineering and Methodology
(TOSEM), 23(4), 31.

10 Communication Design Quarterly Online First, January 2019

Mautone, P. D., & Mayer, R. E. (2001). Signaling as a cognitive
guide in multimedia learning. Journal of Educational
Psychology, 93(2), 377.

McLellan, S. G., Roesler, A.W., Tempest, J.T., & Spinuzzi, C.I.
(1998). Building more usable APIs. IEEE Software, 15(3),
78–86.

Meng, M., Steinhardt, S., & Schubert, A. (2018). Application
Programming Interface Documentation: What Do Software
Developers Want? Journal of Technical Writing and
Communication, 48(3), 295–330.

Mihaly, F. (2011). Writing helpful API documentation [Blog post].
Retrieved from http://theamiableapi.com/2011/11/01/api-
design-best-practice-write-helpful-documentation

Myers, B. A., & Stylos, J. (2016). Improving API usability.
Communications of the ACM, 59(6), 62–69.

Nykaza, J., Messinger, R., Boehme, F., Norman, C. L., Mace,
M., & Gordon, M. (2002). What programmers really want:
results of a needs assessment for SDK documentation. In
Proceedings of the 20th annual international conference on
Computer documentation, 133–141. ACM.

Robillard, M. P. (2009). What makes APIs hard to learn? Answers
from developers. IEEE Software, 26(6), 27–34.

Robillard, M. P., & DeLine, R. (2011). A field study of API
learning obstacles. Empirical Software Engineering, 16(6),
703–732.

Shull, F., Lanubile, F., & Basili, V. R. (2000). Investigating
reading techniques for object-oriented framework learning.
IEEE Transactions on Software Engineering, 26(11),
1101–1118.

Sillito, J., & Begel, A. (2013). App-directed learning: An
exploratory study. In Cooperative and Human Aspects of
Software Engineering (CHASE), 2013 6th International
Workshop, 81–84. IEEE.

Stylos, J. (2009). Making APIs more usable with improved API
design, documentation and tools (Doctoral dissertation,
Carnegie Mellon University). Retrieved from http://www.
cs.cmu.edu/~NatProg/papers/

Stylos, J., & Clarke, S. (2007). Usability implications of requiring
parameters in objects’ constructors. In Software Engineering,
2007. ICSE 2007. 29th International Conference, 529–539.
IEEE.

Stylos, J., Faulring, A., Yang, Z., & Myers, B. A. (2009).
Improving API documentation using API usage information.
In Visual Languages and Human-Centric Computing, 2009.
VL/HCC 2009. IEEE Symposium, 119–126. IEEE.

Uddin, G., & Robillard, M. P. (2015). How API documentation
fails. IEEE Software, 32(4), 68–75.

van der Meij, H., & Carroll, J. M. (1995). Principles and
heuristics for designing minimalist instruction. Technical
Communication, 42(2), 243–261.

Watson, R., Stamnes, M., Jeannot-Schroeder, J., & Spyridakis,
J. H. (2013). API documentation and software community
values: a survey of open-source API documentation. In

Proceedings of the 31st ACM International Conference on
Design of Communication, 165–174. ACM.

ABOUT THE AUTHORS
Michael Meng is professor of applied linguistics at Merseburg
University of Applied Sciences where he teaches courses on text
analysis, text production and research design. Before joining
university, he worked for 12 years as a technical communicator for
an international software company. His research focuses on using
empirical methods to study the effects of linguistic and design
variables on comprehension and the usability of information
products in technical communication.

Stephanie Steinhardt earned a diploma in Technical Communication
from Merseburg University of Applied Sciences. She teaches
information design and works as a freelance consultant and
e-learning specialist for industry clients.

Andreas Schubert received a Master’s degree in Technical
Communication from Merseburg University of Applied Sciences
and worked as research assistant in a project on optimizing API
documentation. He currently holds an industry position as technical
communicator.

	Cover_Meng_Steinhardt_Schubert_01-28-19
	Mengfinal

