
Optimizing API Documentation
Some Guidelines and Effects

Michael Meng
Department of Business Studies and
Information Sciences, Merseburg
University of Applied Sciences,

Merseburg, Germany
michael.meng@hs-merseburg.de

Stephanie M. Steinhardt
Department of Business Studies and
Information Sciences, Merseburg
University of Applied Sciences,

Merseburg, Germany
mail@steinhardt-dokumentation.de

Andreas Schubert
Department of Business Studies and
Information Sciences, Merseburg
University of Applied Sciences,

Merseburg, Germany
andreas.schubert83@gmail.com

ABSTRACT
The growing importance of APIs creates a need to support devel-
opers with effective documentation. Prior research has generated
important findings regarding information needs of developers and
expectations they form towards API documentation. Several guide-
lines have been proposed on the basis of these findings, but evidence
is lacking whether such guidelines actually lead to better documen-
tation. This paper contributes the results of an empirical test that
compared the performance of two groups of developers working
on a set of pre-defined tasks with an API they were unfamiliar
with. One group had access to documentation which was optimized
following guidelines for API documentation design proposed in
the literature whereas the other group used non-optimized docu-
mentation. Results show that developers working with optimized
documentation made fewer errors on the test tasks and were faster
in planning and executing the tasks. We conclude that the guide-
lines used in our study do have the intended effect and effectively
support initial interactions with an API.

CCS CONCEPTS
• Software and its engineering → Software creation and man-
agement; Software post-development issues; Documentation; •
Human-centered computing → Human computer interaction
(HCI); HCI design and evaluation methods; User studies.

KEYWORDS
API documentation, user studies, information design, usability

ACM Reference Format:
Michael Meng, Stephanie M. Steinhardt, and Andreas Schubert. 2020. Opti-
mizing API Documentation: Some Guidelines and Effects. In Proceedings of
the 38th ACM International Conference on Design of Communication (SIG-
DOC ’20), October 03, 04, 2020, Denton, TX, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3380851.3416759

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7525-2/20/10. . . $15.00
https://doi.org/10.1145/3380851.3416759

1 INTRODUCTION
The growing importance of Application programming interfaces
(APIs) in modern software development creates a need to support
developers in learning new APIs. A dimension that has become
critical in this respect is API usability, i.e. the extent to which
APIs fit the needs and expectations of the target audience [1, 2].
API documentation plays an important role in making APIs more
usable. As pointed out by Myers & Stylos [3], API documentation
is essential in mitigating API usability problems that cannot be
resolved via API design decisions or tool support. Moreover, it has
been shown that poor documentation leads to frustration, loss of
time and can cause developers to abandon an API [4, 5].

Various research efforts have been made to improve API docu-
mentation. One line of research has focused on tools that facilitate
access to information, e.g. by recommending information that could
be relevant in the context of a certain task [6]. A different approach –
which also guides the research presented here – has been to identify
content elements that are critical for learning an API, and dimen-
sions of information design that support developers in locating and
processing this content [4, 7].

Prior research following this approach has identified various
aspects regarding content and design that are important from a
developer perspective. Based on such findings, a number of guide-
lines for optimizing API documentation have been proposed [7–9].
However, it is unknownwhether these guidelines have the intended
effect and effectively support developers learning an API.

The goal of this paper is to contribute the results of an empirical
test that examined effects of applying guidelines for API documenta-
tion design we proposed in earlier work on developer performance
[9]. The test was designed to find out whether changes to the doc-
umentation in response to the guidelines lead to more successful
initial interactions with the API, with focus on success (i.e., errors
made on a set of pre-defined tasks) and effectiveness (i.e., the time
required to solve the tasks).

2 LITERATURE REVIEW
2.1 Research on API documentation
API documentation [4, 10] and documentation on software systems
in general [11, 12] have often been described as poor and incom-
plete. In fact, Robillard [13] and Robillard & DeLine [7] identified
documentation as main obstacle for learning a new API. In response
to the findings of Robillard & DeLine, much research has been de-
voted to explore what users of API documentation want, expect and
need by conducting interviews and surveys [4, 14], by observing

https://doi.org/10.1145/3380851.3416759
https://doi.org/10.1145/3380851.3416759

SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA Michael Meng et al.

developers solving tasks with a new API [8, 9, 15], and by analyzing
API documentation developers produce themselves [16] or refer
others to [17]. In this section, we summarize main results of these
research efforts. Guidelines for optimizing API documentation that
have been derived from this research will be presented in the next
section.

2.1.1 API overview. Developers approach API documentation with
two broad goals in mind: orientation (e.g. to find out whether the
API offers solutions to a specific problem) or learning (e.g. to try
out features or to solve a specific programming task). Regardless
of the goal, developers initially expect high-level information that
provides a brief overview of the API, e.g. explains the scope of
the API, the main features it offers, and technical requirements
[7, 14, 16].

2.1.2 Opportunistic vs. systematic approaches to learning and pro-
gramming. Developers use different strategies when starting to
work with a new API. The different strategies have been described
in terms of developer personas presented in Clarke [18]. Clarke
distinguishes between opportunistic, pragmatic and systematic de-
velopers. Opportunistic developers work in an exploratory manner
and attempt to start working on specific tasks as soon as possible.
They look for code example that relate to their problem and attempt
to extend those examples step by step. Systematic developers try
to understand how the API works before diving into the details of
a task. They deal with concepts even if the concepts do not relate
directly to the task at hand. Pragmatic developers combine elements
of both strategies.

2.1.3 Importance of task orientation. The importance of task ori-
entation belongs to the core insights of Minimalism [19] and this
insight is relevant in the context of API documentation as well.
Developers approach documentation with a problem or task in
mind [14]. They do not intend to learn an API as a whole, even if
they follow a systematic approach to learning. Learning a new API
proceeds in a task-directed manner [20], and can be described as a
form of “just-in-time learning” [16].

2.1.4 Role of conceptual background knowledge. Background
knowledge of the domain covered by an API (e.g. business pro-
cesses involved in B2C or B2B commerce, procurement or enter-
prise resource planning) greatly facilitates the learning process
[8, 21]. Furthermore, links to documentation developers include in
answers on StackOverflow often point to description of concepts,
emphasizing the importance of conceptual background informa-
tion as well [17]. However, it is a challenge that developers tend to
ignore documents which focus on conceptual information, hence
potentially convey the domain-related background knowledge of an
API, with the reluctance to refer to concepts documents apparently
being independent of the learning strategy the developers adopt
[14].

2.1.5 Selective access to documentation. Like most users, develop-
ers use API documentation in a highly selective manner [12, 14]. In
addition, Meng et al. [9] observed that the developers participating
in their observation study used documentation to roughly the same
extent, but differed with respect to the amount of attention devoted
to individual sections, in particular the concepts section. Findings

like this suggest that documentation has to provide means to fa-
cilitate selective access, for example by clearly separating text and
code sections, as well as by providing a powerful search function
and consistent navigation.

2.1.6 Identifying entry points. A main challenge for developers
getting into a new API is to identify appropriate entry points and
to relate specific use cases or business processes to particular API
elements [7]. This involves discovering API resources or classes
that represent particular business objects, as well as discovering
functions and methods to access and transfer data across business
objects. Therefore, specific means should be taken to help devel-
opers map business objects and processes to API resources, e.g. by
highlighting API elements mentioned in a textual explanation in a
corresponding code example.

2.1.7 Role of code examples. Several studies identified code exam-
ples as an important learning resource [1, 13] and as an important
starting point for solution development [22, 23]. Developers often
use code examples that seem to address the task at hand, and then
extend and modify the code example to make it fit the current
needs.

2.2 Guidelines for API documentation design
This section summarizes and slightly extends the heuristics and
guidelines for API documentation design proposed in Meng et al.
[9]. The guidelines derive from findings as discussed in the previous
section. Note that the guidelines are not intended to be exhaustive.
For additional guidelines, see Jeong et al [8] and Robillard & DeLine
[7]. Note also that the guidelines are merely “rules of thumb” and
can be implemented in various ways. They do not determine a
specific solution but are intended to guide the search for solutions.

2.2.1 Heuristic 1: Enable efficient access to relevant content. The
design of API documentation should facilitate effective and selective
access to content that is relevant to developer tasks.

• Guideline 1.1: Organize the content according to main us-
age scenarios supported by the API and typical tasks that
developers will solve with the API.

• Guideline 1.2: Present important conceptual information
integrated with the description of tasks or usage scenarios
where knowledge of these concepts is needed.

• Guideline 1.3: Provide transparent and consistent navigation
options and a powerful search function. If integrating search
is difficult, e.g. due to technical limitations, facilitate simple
search by presenting information on a single page instead
of distributing the information across multiple linked pages.

• Guideline 1.4: Structure the content at section level con-
sistently. Use appropriate verbal and visual signaling tech-
niques to make the structure transparent.

2.2.2 Heuristic 2: Facilitate initial entry into the API.. API documen-
tation design should support developers in identifying entry points
into the API. Relating particular tasks or usage scenarios to specific
elements of an API are key issues for successful API learning.

• Guideline 2.1: Provide clean and working code examples.
Code examples need to be complete and accurate and should
enable direct re-use via copy-and-paste.

Optimizing API Documentation SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA

• Guideline 2.2: Provide relevant background knowledge on
the domain covered by the API and explain important con-
cepts that can support the learning process.

• Guideline 2.3: Support developers in relating concepts to
API elements. Signal to the developers how concepts are
represented, e.g. by emphasizing relevant elements in a code
example.

• Guideline 2.4: Provide a concise API overview that tells de-
velopers and other stakeholders the purpose of the API, its
main features and important technical characteristics. Make
sure the overview can be accessed easily.

2.2.3 Heuristic 3: Support different strategies for learning and de-
velopment. API documentation has to serve different strategies for
learning and development. In particular, API documentation has to
address the information needs of developers that adopt an oppor-
tunistic and exploratory strategy.

• Guideline 3.1: Enable selective access to code, e.g. by using
a multi-column layout and formatting means that clearly
separate text from code.

• Guideline 3.2: Signal text-to-code relations in order to help
developers mapping concepts to code. This reduces reading
efforts and facilitates the identification of relevant informa-
tion.

• Guideline 3.3: Provide important conceptual information
redundantly. Present it wherever needed. If possible, present
important conceptual information as part of source code
comments to make sure developers focusing on code will
discover and process it as well.

• Guideline 3.4: Enable fast and productive use of the API.
Include code examples and integrate try-out functionality
that can be used to test API elements immediately without
much effort.

Beyond the guidelines presented here, it is necessary to ensure that
API documentation meets standard quality criteria of technical doc-
umentation. Developers expect API documentation to be accurate
and complete in the sense that it provides all information required
to solve tasks with the API, building on the knowledge which they
bring to the tasks. Moreover, developers expect documentation to
be easily comprehensible, even when (and in particular if) the API
is inherently complex.

2.3 Research Questions
The guidelines presented in the previous section are motivated by
research based on introspection, self-report, analysis of documen-
tation artefacts produced by developers and observation of actual
developer activities. So far, no attempts have been made to demon-
strate that these or similar guidelines proposed in the literature
support better developer performance. However, understanding the
effects of such guidelines and the design decisions they encourage is
important both from a research and from a practitioner perspective
[24]. The goal of our research was to contribute empirical data on
this issue.

• (RQ1) Our first research question is to examine whether
the guidelines for API documentation design presented in
the previous section have the intended effect on developer

performance when using documentation following these
guidelines to learn a new API. In particular, we want to
know whether the guidelines support more successful initial
interactions with an API.

• (RQ2) Given that effects on developer performance can be
determined, our study also aims to provide initial insights
into how such effects come about. According to the model
proposed by Guthrie et al. [25], interacting with procedural
documents in order to solve tasks involves cognitive pro-
cesses along two main dimensions: processes involved in
locating, studying and comprehending information provided
in a document, and processes involved in planning, prepar-
ing and executing tasks. Following this distinction, our study
asks whether optimizations of API documentation on the ba-
sis of guidelines proposed in the literature primarily have an
impact on locating and studying information, or on actually
performing the tasks.

3 METHODS
3.1 Study Design and Materials
In order to address the research questions, we set up a study in
which developers were asked to solve a set of tasks with an API that
was unfamiliar to them. Whereas one group of developers worked
with documentation that closely mirrored the original documenta-
tion of the API provider, the other group had access to an improved
version of that documentation. Modifications of the documenta-
tion followed the guidelines discussed in the previous section. The
setup enabled us to measure the joint effect of the guidelines – as
implemented by our specific modifications – on variables that can
inform us about developer performance, such as the time required
to solve the tasks and the proportion of tasks solved correctly.

The purpose of the API selected for the test (http://shipcloud.io)
is to facilitate the integration of online shops with the services of
shipping providers, making it easier for shop owners to offer a broad
range of shipping services to customers. The API, which we already
used in an earlier study [9], is based on the REST paradigm, which
means that business objects such as shipments, carriers or service
rates are represented as resources that are addressable over the
Internet via a URL and standard HTTP requests. For a nontechnical
introduction to REST APIs, see Johnson [26].

Documentation and other resources to get started with the ship-
cloud API are provided on a developer portal (http://developers.
shipcloud.io.. For our test, we partly rebuilt the developer por-
tal using Flatdoc, a simple HTML-based site generator (https:
//ricostacruz.com/flatdoc/.. The rebuilt version of the developer
portal included all parts of the original site that were relevant for
the purposes of our test.

Two new version of the developer portal were created: a control
version and an optimized version. The control version retained the
structure of the original documentation, including all main content
categories: “Concepts”, “Recipes”, “API Reference”, “Integration”,
and “Samples.” The structure of the sections within each content
category, the sub-headings and all content elements were left un-
modified. Mirroring the original site, the control version did not
offer a search option.

http://shipcloud.io
http://developers.shipcloud.io
http://developers.shipcloud.io
https://ricostacruz.com/flatdoc/
https://ricostacruz.com/flatdoc/

SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA Michael Meng et al.

Figure 1: Example page of the API documentation serving as control version.

The optimized version was modified following the guidelines
discussed above and included the following changes:

• A three-column layout separating navigation, textual de-
scriptions and sample code was imposed in order to facilitate
selective access to code. (guideline 3.1)

• All sections of the documentation were checked and mod-
ified if necessary to ensure consistent structure at section
level. (guideline 1.4)

• Conceptual information was added, for example to explain
the concept of a shipment, the stakeholders and resources
involved in a shipment, as well as more specific concepts
such as return shipment. In addition, a new section “Terms
you need to know” was added to explain important terms.
Note that this modification was restricted to sections of the
documentation that developers would potentially use when
solving the tasks. (guideline 2.2)

• When conceptual information was added, it was integrated
with the description of use cases where it was needed. (guide-
line 1.2, 3.3)

• Graphics and visualizations were added to help developers
map concepts and business processes onto API elements.
Process components and their relation to stakeholders were
sometimes visualized using animation. (guideline 2.3)

• Likewise, visual signaling and color coding were used to
relate API elements mentioned in a textual description to
the respective API elements in the code example accompa-
nying the description (e.g., parameters in the JSON request
body). This was intended to support selective reading and
to help developers identify and select relevant information.
(guideline 3.2)

• The structure of the documentation was changed to increase
task orientation and to better reflect important use cases. In-
stead of using “Concepts”, “Recipes”, “Samples”, “Integration”
and “API reference” as main categories, we used: “How the

API works”, “How to run the API” and “How to use the API.”
(guideline 1.1)

• A short overview of main API features and use cases served
by the API was added. This overview was presented on the
starting page to make it easily accessible. (guideline 2.4)

• A sample request for creating a shipment was added as part
of the overview. This sample represents a central use case.
The sample supports developers in getting productive fast.
(guideline 3.4)

• All code examples were reworked to eliminate placeholders
and to make them ready for copy-and-paste use. (guideline
2.1)

An example page of the control version is shown in Figure 1. The
page describes how to configure a return shipment. Figure 2 shows
how this page changed following the optimization process, includ-
ing the three-column layout, the graphic that was added to explain
the concept and to demonstrate how the concept is related to param-
eters of the JSON code transferred via the request body. Moreover,
placeholders were removed from the corresponding code example
and visual signals added to highlight a parameter that is particularly
relevant in the context of the current topic and mentioned both in
the graphic and in the textual description.
Note that for practical reasons, guideline 1.3 could only be imple-
mented in a limited way. According to guideline 1.3, a powerful
search function should be offered to facilitate selective access to
relevant content. We added a search function to the optimized ver-
sion. However, due to technical restrictions, only a simple search
function was possible.

3.2 Participants
We recruited 22 participants (21 male, 1 female) for our test. Seven-
teen participants were recruited from software companies that we
contacted leveraging our personal network. To obtain the partici-
pants, we asked the management whether they would be interested

Optimizing API Documentation SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA

Figure 2: Example page showing the page of Figure 1 in the optimized version of the documentation.

in supporting our study and requested volunteers. Since the API
used for our test does not presuppose any specific skills with respect
to programming language or technology, the only inclusion criteria
we defined was for participants to have practical experience with
REST APIs and to be unfamiliar with the shipcloud API. Volunteers
that were proposed by the partner companies as test participants
included both employees as well as students working as interns.
Five additional participants (all advanced computer science stu-
dents) were recruited from our university. All participants received
10 EUR for completing the test.

In a questionnaire administered to all participants before the test,
ten participants identified themselves as “developer”, two as “team
lead” and ten as “student.” Participants were assigned randomly to
one of the two experimental groups: the group working the control
version of the documentation (“control”) and the group working
with the optimized version (“optimized”). We defined a test schedule
beforehand and assigned developers to groups depending on the
order in which they appeared.

The mean age of participants was 33.4 years (Min: 21, Max: 53).
The two experimental groups did not differ with respect to age, with
a mean age of 33.1 for the control group and of 33.7 for the group
working with the optimized documentation. In order to assess the
level of programming expertise of our participants, we asked for
developer experience in general, and for developer expertise in a
professional context. The two groups were similar with respect to
both parameters (general developer experience in years: control =
9.3, optimized = 9.5; developer experience in a professional context:
control = 8.0 years, optimized = 7.8). Both groups were also similar
with respect to experience with REST APIs, which participants
were to assess on a scale ranging from 1 (= “no experience”) to 5
(= “highly skilled”), with means of 3.36 for both groups.

In addition to developer experience and experience with REST
APIs, we also assessed e-commerce experience. First, we asked

whether participants had gained any developer experience in e-
commerce, for example by working as a developer for an online
shop or a company developing online shop software. In both groups,
six participants indicated to have such experience, and five to have
no such experience. We also asked participants to assess their e-
commerce developer experience on a scale ranging from 1 (= no
experience) to 5 (= highly skilled). Means obtained were 2.0 for the
control group and 1.8 for the group working with optimized docu-
mentation. None of the between-group differences was statistically
significant.

3.3 Procedure
Tests were conducted in the usability lab of our university for the
university students, and on-site at conference rooms provided by
the partner companies for industry participants. Before starting
the test, we obtained informed consent from participants using a
document which explained the study, the procedure and policies
regarding processing personal data. Participants were also informed
that they could terminate the test at any point without having to
give a reason. Note that no IRB or similar institution is in place at
our university.

Test sessions started with a short questionnaire to obtain data
regarding age, gender, developer experience and experience with e-
commerce and the shipcloud API. Afterwards, participants received
test instructions and were shown the resources available to them
during the test. When participants had completed the test tasks, a
second questionnaire was administered which requested them to
rate the structure and the overall quality of the API documentation.
Moreover, a short, semi-structured interview was conducted to
provide participants with the opportunity to comment on positive
and negative aspects of the documentation. Participants were then
debriefed, which ended the session. Test sessions lasted between
40-60 minutes.

SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA Michael Meng et al.

The test consisted of five tasks that covered typical API use
cases, such as creating return and express shipments, requesting
pickup for a shipment at a predefined time and directing a ship-
ment to a dedicated drop-off station. The tasks were identical to
the tasks used in our earlier study [9]. The tasks did not require
any programming. Rather, participants had to identify the appro-
priate endpoints, resources and parameters. Moreover, the tasks
required to add request body information to the API calls using
JSON notation. To facilitate the configuration and execution of
API calls, participants had access to a Postman client that was pre-
pared with respect to authentication information and the request
body format. Tasks were provided in written form. Along with the
tasks, participants received a sheet summarizing basic activities in
Postman. Besides Postman, participants were provided with the
shipcloud API documentation and the shipcloud dashboard, each
presented on a separate browser page. Participants were free to use
the documentation at any point they wanted.

During the test session, we took audio and screen recordings of
all participant activities. In addition, we recorded participant’s eye
movements using a video-based eye tracker (SMI 250mobile, Sen-
soMotoric Instruments) attached to the monitor of the test laptop.
Recording of screen activities and eye movements started immedi-
ately before participants received the task sheet. Recording stopped
after the last task had been completed. To record the interviews per-
formed after the tests, the retrospective think-aloud (RTA) function
of the software package BeGaze was used.

3.4 Data Analysis
Data analysis was based on the screen videos with eye tracking
data overlaid. Screen videos were loaded into the INTERACT 17
(Mangold International) software for manual coding. Two coding
schemes were applied:

• Task. The code for “Task” provided the basis for analyzing
accuracy on task and task duration. As part of the instruction,
participants were asked to notice the experimenter when
they had completed a task and when they started to work on
a new task. Using this information, we coded interval events
for task 1 to task 5 ranging from the beginning to the end of
each task.

• Window. The coding schema “Window” was used to deter-
mine the time participants spent in the documentation and
the time they spent in the different types of resources outside
the documentation. Values of the coding schema “Window”
were applied on the basis of the eye tracking data. On the
one hand, we coded interval events whenever participants
viewed sections within the shipcloud API documentation.
We also coded events to mark intervals in which participants
viewed resources outside the API documentation, such as the
Postman client, the shipcloud dashboard or other resources
(e.g. when participants opened a browser window to look
up an unknown term in an online dictionary).

Each coding schema was applied in a separate coding run. Coding
was always performed by a single researcher only.

3.5 Results
Quantitative data analysis focused on three dependent variables:
accuracy on tasks, time on tasks and time spent in documentation
versus time spent in resources outside the documentation. All sta-
tistical tests were conducted using the R software package, version
3.6.1 [27]. The data were analyzed with mixed-effects regression
modeling [28] using the lme4 R package [29]. Mixed-effects models
can be used to analyze both continuous variables (such as time on
task) as well as categorical variables (such as task accuracy, scored
as “correct” or “incorrect”). Moreover, they make it possible to cap-
ture effects of multiple random factors in a single analysis, such
as random effects due to systematic differences between partici-
pants or experimental tasks in the current study. For an in-depth
discussion of advantages of mixed-effects modeling, see Baayen et
al. [28] and Jaeger [30]. A non-technical introduction can be found
in Balling [31]. For applications of mixed-effects modeling in the
context of usability studies, see Balling [32] and Meng [33].

Note that there are different proposals with respect to the con-
struction of random effect terms in a mixed model. Following Ma-
tuschek et al. [34], we attempted to identify the most parsimonious
model predicting the observed data pattern.

3.5.1 Accuracy on tasks. The five tasks constructed for the test
represented typical API use cases. However, they differed in com-
plexity. We therefore defined 3-5 sub-tasks per task in order to take
the varying degree of complexity between the tasks into account,
resulting in a total of 18 sub-tasks. For example, task 1 (“Creating
a shipment that is delivered to a specific drop station”) involved
the sub-tasks “Identifying the resource to create a shipment re-
quest”, “Identifying and modifying the correct parameter to have
the shipment delivered to the specific drop station”, “Constructing
the URL to invoke the resource correctly.” Task 2 (“Creating a return
shipment for the shipment just created”) involved the sub-tasks
“Identifying and modifying the parameter that defines a return ship-
ment”, “Changing the addresses [sender becomes recipient and vice
versa]” and “Constructing the URL to invoke the resource correctly.”
We then checked on the basis of the screen recordings whether sub-
tasks were solved correctly or not, using binary coding. Sub-tasks
solved correctly were scored as 1, sub-tasks that were not com-
pleted correctly or only with the help of the experimenters were
scored as 0. Hence, for task 1, a total of three points was possible if
participants solved all sub-tasks completely. Often, task solution
was partially correct in that only some of the sub-tasks were solved
correctly. For example, for task 1, participants sometimes identified
the correct resource and correctly constructed the URL to invoke
the resource, but failed to identify and modify the parameter that
would have the shipment delivered to the drop station, resulting in
a score of 2 out of 3.

Results for accuracy on tasks (reported as percentage values)
were as follows. The overall mean was 80.29 (SD=14.09). Accuracy
was higher for the group working with optimized API documenta-
tion (M=86.35, SD=11.46) compared to the control group (M=74.24,
SD=14.32). To assess the effect, we fitted logistic mixed-effects mod-
els using the glmer function of the lme4 package (Table 1). The
analysis included “doctype” (optimized vs. control) as fixed effect,
and “subject” and “sub-task” as random effects. Hence, every partic-
ipants contributed 18 data points to the analysis, one for each of the

Optimizing API Documentation SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA

Table 1: Modelling results for task accuracy.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.3222 0.3982 3.320 < 0.001
“optimized” vs. “control” 2.2210 0.8973 2.475 < 0.05

Formula: score_correct ∼ doctype + (1|subject) + (1 + doctype|sub-task)

Table 2: Modelling results for time on tasks.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 380.704 67.589 5.633 < 0.01
“optimized” vs. “control” -16.831 38.717 -0.434 n.s.

Formula: time ∼ doctype + (1|task)

18 sub-tasks (see Table 1 for the formula call of the model finally
selected). As shown in Table 1, the observed difference between the
two groups is significant.

3.5.2 Time on tasks. Did optimization have an effect on the time
participants needed to solve the tasks? The analysis of time on
tasks is based on the interval codes using the coding schema “Task.”
Hence, each participant contributed five data points, repesenting
the times needed to solve each of the five test tasks. Prior to analy-
sis, data were screened for outliers using boxplots and Q-Q plots
(quantile-quantile plots). Since inspection of the plots suggested
that there were outliers, data were corrected by removing all values
more than 2.5 standard deviations away from the overall mean.
This procedure removed 3 out of 110 data points, hence 2.8 % of the
data.

The overall mean time participants spent on a test task was
369 s (SD=234). The numeric difference between the two groups
was rather small, with means of 364 s (SD=224) for the group
working with optimized documentation and a slightly higher 374 s
(SD=245) for the control group. To check whether the difference
between groups is significant, linear mixed-effects models were
fitted which included “doctype” (optimized vs. control) as fixed
effect, and “subject” and “task” as random effects (see Table 2 for
the complete formula call of model finally selected). As shown in
Table 2, the observed difference between the two groups is not
significant.

3.5.3 Reading versus acting. To address RQ2, an additional analysis
was performed to explore time on tasks further. The time partici-
pants spent on a task aggregates two different types of activities:
the time they spent locating and studying information in the docu-
mentation, and the time they needed to plan and execute the tasks,
such as configuring values in the Postman client or inspecting the
response received from the API. If the efforts to optimize the API
documentation work as expected, they should facilitate task execu-
tion. Predictions regarding the time participants spend in the docu-
mentation are less clear. On the one hand, it could be argued that
the optimizations should support participants in locating relevant
information, hence reduce the time they spend in the documenta-
tion. On the other hand, the optimizations increased the amount
of content contained in the documentation, e.g. because graphics

were added to explain important concepts. Moreover, participants
could possibly devote more time to reading in the documentation
because they find it more helpful.

To operationalize this question, we grouped time values depend-
ing onwhether participants viewed some part of the documentation,
or whether they viewed resources outside the documentation, such
as the Postman client or the shipcloud dashboard. This analysis was
based on the coding schema “Window.” Evidently, this approach
is only a rough approximation to activities that reflect “reading”
and “acting.” Participants also attend to the documentation while
executing a task, e.g. when copying example code to be included as
part of their own solution. However, the operationalization should
be good enough as a start. Moreover, the criterion used to distin-
guish between time to read and time to act is sufficiently clear to
enable reliable coding.

Data were analyzed on a by-task basis for each participant. There-
fore, each participant contributed 10 data points: two data points
(a viewing time for documentation and a viewing time for other
resources) for each of the five test tasks. Prior to analysis, data were
screened and corrected for outliers, which affected 7 out of 220
data points, corresponding to 3.3 % of the data. The overall mean
obtained was 179 s (SD=124). Condition means, factor means and
the respective standard deviations are shown in Table 3.

Data were subjected to a 2x2 analysis using linear mixed-effects
models. The models included the factors “window” (documentation,
other) and “doctype” (control, optimized) as fixed effects. Initial
modeling started with “subject” and “task” as random effects. The
final model arrived at and the respective model values are shown
in Table 4.
The main effects were not significant, but there was a significant in-
teraction of “window” and “doctype.” To explore the interaction, we
performed post-hoc Tukey HSD comparisons using the emmeans
R package [35]. The comparisons revealed a significant difference
between the conditions “control” and “optimized” for viewing times
outside the documentation (189 s vs. 149 s, t(205) = 2.20, p < .05)
whereas the difference was not significant for viewing times within
the documentation (179 s vs. 202 s, t(205) = -0.93, n.s.). Hence, opti-
mizations facilitated task execution, but did not significantly affect
the time spent in the documentation.

SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA Michael Meng et al.

Table 3: Mean viewing times in or outside the documentation.

doctype window
documentation other mean

control 179 (129) 189 (133) 184 (131)
optimized 202 (127) 149 (105) 175 (119)
mean 190 (128) 168 (121) 179 (124)

All times in seconds, standard deviations in parentheses.

Table 4: Modelling results for viewing times in or outside the documentation.

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 181.379 31.396 5.777 < 0.01
doctype -12.103 14.807 -0.817 n.s.
window -21.138 14.796 -1.429 n.s
doctype:window -63.326 29.595 -2.140 < 0.05

Formula: time ∼ doctype * window + (1|task)

3.5.4 Post-test questionnaire data. After participants had com-
pleted the tasks, we administered a questionnaire in order to get
feedback on perceived task difficulty and documentation quality.
The questionnaire consisted of three items, all associated with a
scale ranging from 1 to 5.

The first question asked participants to rate the difficulty of the
tasks (1=very easy, 5=very difficult). For the control group, a mean
rating of 2.27 (median=2) was obtained, for the group working with
optimized documentation a mean rating of 2.09 (median=2). The
second question asked participants to evaluate the overall quality
of the documentation (1=very bad, 5=very good). Mean values for
the control group (3.73, median=4) and the group using optimized
documentation (3.91, media=4) were again very similar.

Finally, participants were asked to evaluate the structure of the
documentation (1=very bad, 5=very good). For both groups, the
mean rating was 3.72 (median=4). None of the differences reached
statistical significance.

3.5.5 Observations and comments. This section describes some ob-
servations and comments noted during the test or during post-hoc
inspection of the screen videos, as well as participant comments.
Note that interviews were not transcribed and no attempts were
made at a more formal analysis. Observations and comments de-
scribed here should be treated as anecdotal evidence.

We noted that developers differed greatly with respect to how
they prepared for the first task. For example, P03 and P13 took
much time to read through the documentation, whereas P04 and
P08 jumped almost immediately into the first task. Whether this
difference correlates with the distinction between opportunistic and
systematic strategies for learning and development is an interesting
question that future research should take up.

We also noted great variability among developers with respect
to their ability to reflect and report on their strategies and their
approaches to the tasks. While some developers clearly recalled the
approach they followed towards individual tasks and sometimes

even remembered individual steps, others had a lot more difficulty
to provide this type of self-report.

Several participants working with optimized documentation
mentioned that they appreciated the number of examples and that
the examples could be re-used directly. Participants of the control
group appreciated the number of examples provides as well, but
noted that some examples were not ready to be re-used.

When asked what they liked or did not like about the documen-
tation and which suggestions they would have for improvements,
participants of the group working with optimized documentation
expressed that they liked the presentation of explanations and code
in separate columns. Participants from both groups mentioned
that the documentation would benefit from more powerful search.
Other issues that were mentioned by participants regardless of
test group were that they missed more elaborate explanations of
error codes, more comfortable navigation options and more links
between related sections.

4 DISCUSSION
The results of our quantitative analyses suggest that the guidelines
for API documentation design used in our study do have an effect on
the initial interactions of developers with an API that is unfamiliar
to them (RQ1). We observed an effect of documentation type on
task accuracy: participants working with documentation that was
optimized following the guidelines proposed inMeng et al. [9] made
fewer errors on a set of pre-defined tasks. This suggests that initial
interactions were more effective. The average time participants
needed to solve the test tasks was slightly lower for participants
working with optimized documentation, but this difference was not
significant.

Having confirmed that the guidelines do have an overall effect,
our second research questions attempted to reveal how this effect
comes about. With reference to the model proposed in Guthrie et al.
[24], we askedwhether the guidelines for API documentation design

Optimizing API Documentation SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA

have an effect on actual task execution (e.g. by making task execu-
tion faster), whether they affect the amount of time participants
spend searching and studying information in the documentation, or
whether they would possibly affect both types of activities (RQ2).

Analysis of the viewing times of the participants in the documen-
tation versus in resources other than documentation revealed an
interactive effect. We observed a significant difference in viewing
times in resources outside documentation, a variable which we used
as a rough estimate to assess the effort involved in planning, prepar-
ing and executing the test tasks. Participants working with modified
documentation spent less time in resources outside documentation,
hence actually performed the test tasks faster. Viewing times in
the documentation did not differ significantly between the groups
and were slightly elevated for participants working with optimized
documentation. As discussed above, only limited conclusions can
be drawn from this comparison, since optimized documentation
contained more content.

The fact that initial interactions were more successful when
participants had access to optimized documentation did not lead
to better post-test ratings of overall documentation quality and
documentation structure, nor did it affect the assessment of per-
ceived task difficulty. We assume that the absence of any effects
here is due to the simple instruments used to measure perceived
documentation quality and task difficulty.

Overall, we conclude that the guidelines for API documentation
design are successful in the sense that they jointly drive perfor-
mance of developers in the intended direction. Our results confirm
the usefulness of design guidelines that have been developed on the
basis of prior research exploring information needs of developers
working with APIs, their expectations regarding the content and
design of API documentation, and the strategies they adopt for
learning and programming.

5 CONCLUSIONS
Given the growing importance of APIs and the critical role of API
documentation for API usability, there is a need to support best
practices that emerge in the field with evidence-based principles
on which practitioners can base decisions regarding API documen-
tation design. Research on API documentation has generated many
specific findings related to content elements and content presenta-
tion. From these findings, several guidelines have been derived to
help make API documentation fit the needs of the target audience.
However, evidence is lacking whether the guidelines proposed in
the literature actually have an effect on the performance of devel-
opers trying to get into a new API. The goal of the current study
was to examine whether guidelines proposed in Meng et al. [9] lead
to more successful initial interactions when developers have access
to documentation following these guidelines.

Our study revealed two main results. First, we found that docu-
mentation that was modified based on the Meng et al. guidelines
enabled developers to solve initial tasks with the API more suc-
cessfully in that fewer errors were made. As a second finding, our
study provides some initial evidence that the modifications which
were applied to the documentation facilitated task execution, hence
reduced the time developers needed to plan, prepare and execute
the API calls. The modifications did not reduce the time developers

spent searching and studying information in the documentation.
However, as already pointed out in the Discussion section, there are
confounding factors that make it difficult to draw conclusions from
a comparison of the time participants spent viewing the documen-
tation. Despite uncertainties that remain with respect to whether
the design decisions affect only task execution or possibly cognitive
processes involved in searching and reading as well, we conclude
that the guidelines do have the intended effect and support de-
velopers trying to get into an API that is unfamiliar to them. If
validated by future studies, the guidelines can hence contribute to
evidence-based principles of API documentation design that enable
practitioners in this domain to make informed decisions.

5.1 Limitations
A limitation of the current study arises from the small sample size
that formed the basis for our quantitative analyses. The main reason
why we decided to terminate data collection with 22 participants
was that we faced severe difficulties in our attempts to recruit
developers as participants from outside university. A solution could
have been to scale up the study by including more students. But as
argued by Ko et al. [36], relying primarily on students potentially
introduces additional biases, as students are likely to have less
experience and skills.

With a small sample size, statistical power is low and studies
run the risk of missing effects that would emerge if a larger sample
was used. Note that we were able to mitigate this problem to some
extent by analyzing the dependent variables on a by-participant
and by-task or sub-task basis. Although we are confident that the
effects reported here are sufficiently robust to draw preliminary
conclusions, follow-up studies using larger samples are clearly
called for.

A related problem arises with respect to participant selection. We
accepted every participant who was proposed to us by the partner
companies supporting our study and who met our inclusion criteria.
Hence, our participants all volunteered and are likely to have been
more interested in the topic of API documentation than the average
developer.

Another limitation concerns the type and complexity of the API
used for the test. The shipcloud API is a small API of limited com-
plexity that represents a specific API type: REST APIs. Although
there is at least some evidence indicating that approaches to learn-
ing and programming adopted by developers do not differ depend-
ing on API type and complexity [14], additional research is needed
to determine whether the conclusions drawn here generalize to
more complex APIs and different API types.

5.2 Future Research
The conclusions that can be derived from our study pertain to the
entire set of modifications that were applied to optimize API docu-
mentation for the test. We have observed an overall effect jointly
produced by the guidelines which motivated our modifications
and the specific design decisions which we used to implement the
guidelines. It is not possible to derive conclusions with respect to
the contribution of individual guidelines and design decisions to
the overall effects. Hence, it is impossible to decide whether all or
only some of the guidelines contributed to the effects, and whether

SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA Michael Meng et al.

some guidelines contribute more to the effects than others. Future
research should focus on individual design variables and clarify
their importance.

Related to this point, future research should also examine inter-
actions of design variables and experience more closely. Research
in other areas (in particular, multimedia learning) has demonstrated
repeatedly that instructional design decisions that effectively sup-
port beginners in a field are less effective – and sometimes even
adversely – for learners that are more knowledgeable, a phenom-
enon known as expertise reversal effect [37]. Applied to API doc-
umentation, future research should examine the role of general
programming experience and domain-related background knowl-
edge more closely, and it should also address whether guidelines
that effectively support developers in the initial learning process
also support developers that have already reached a certain level of
expertise with an API.

Our study provides only limited information with respect to the
effect of guidelines for optimizing documentation on perceived us-
ability. Future research should use more sophisticated instruments
to evaluate perceived usability, e.g. by using standardized question-
naires such as the System Usability Scale (SUS) or the Computer
System Usability Questionnaire (CSUQ), which both have been
found to be informative for a wide range of products [38].

ACKNOWLEDGMENTS
The work reported here has been supported by the German Federal
Ministry of Education and Research (BMBF), FHprofUnt, grant
13FH014PX4 to Michael Meng

REFERENCES
[1] Samuel G. McLellan, Alvin W. Roesler, Joseph T. Tempest, and Clay I. Spinuzzi.

1998. Building more usable APIs. IEEE Softw. 15, 3 (May/Jun 1998), 78-86. DOI:
https://doi.org/10.1109/52.676963

[2] Steven Clarke. 2004. Measuring API usability. Dr. Dobb’s Journal, 29, 6–
9. Retrieved from http://www.drdobbs.com/windows/measuring-api-usability/
184405654

[3] Brad A. Myers and Jeffrey Stylos. 2016. Improving API usability. Commun. ACM
59, 6 (May 2016), 62-69. DOI: https://doi.org/10.1145/2896587

[4] Gias Uddin and Martin P. Robillard. 2015. How API documentation fails. IEEE
Softw. 32, 4 (July/Aug. 2015), 68-75. DOI: https://doi.org/10.1109/MS.2014.80

[5] Barthélémy Dagenais and Martin P. Robillard, 2010. Creating and Evolving De-
veloper Documentation. Understanding the Decisions of Open Source Con-
tributors. In Proceedings of the 8th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE-18). ACM, 127-136. DOI: https:
//doi.org/10.1145/1882291.1882312

[6] Jeffrey Stylos and Brad A. Myers. 2006. Mica. A web-search tool for finding
API components and examples. In Proceedings of the 2006 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC’06). IEEE, 195-202.
DOI: https://doi.org/10.1109/VLHCC.2006.32

[7] Martin P. Robillard and Robert DeLine. 2011. A field study of API learning obsta-
cles. Empir. Softw. Eng. 16, 6 (December 2011), 703-732. DOI: https://doi.org/10.
1007/s10664-010-9150-8

[8] Sae Young Jeong, Yingyu Xie, Jack Beaton, Brad A. Myers, Jeffrey Stylos, Ralf
Ehret, Jan Karstens, Arkin Efeoglu, and Daniela K. Busse (2009): Improving
Documentation for eSOA APIs through User Studies. In: Proceeding of the 2nd
International Symposium on End-User development. (IS-EUD 2009). Heidelberg:
Springer (Lecture notes in computer science, 5435), 86-105. DOI: https://doi.org/
10.1007/978-3-642-00427-8_6

[9] Michael Meng, Stephanie M. Steinhardt, and Andreas Schubert. 2019. How De-
velopers Use API Documentation: An Observation Study. Commun. Des. Q. Rev
7, 2 (July 2019), 40-49. DOI: https://doi.org/10.1145/3358931.3358937

[10] Chris Parnin. 2013. API documentation: Why it sucks. [blog post] Retrieved from:
http://blog.ninlabs.com/2013/03/api-documentation/

[11] Lionel C. Briand. 2003. Software Documentation: How Much is Enough? In
Proceedings of the 7th European Conference On Software Maintenance And Reengi-
neering (CSMR’03). IEEE, 13-15. DOI: https://doi.org/10.1109/CSMR.2003.1192406

[12] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. 2003. How Soft-
ware Engineers Use Documentation: The State of the Practice. IEEE Softw. 20, 6
(Nov./Dec. 2003), 35-39. DOI: https://doi.org/10.1109/MS.2003.1241364

[13] Martin P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from
Developers. IEEE Softw. 26, 6 (Nov./Dec. 2009), 27-34. DOI: https://doi.org/10.
1109/MS.2009.193

[14] Michael Meng, StephanieM. Steinhardt, and Andreas Schubert. 2018). Application
Programming Interface Documentation. What Do Software Developers Want?
J. Tech. Writ. Commun. 48, 3 (July 2018), 295-330. DOI: https://doi.org/10.1177/
0047281617721853

[15] Ekwa Duala-Ekoko and Martin P. Robillard. 2012. Asking and answering ques-
tions about unfamiliar APIs. An exploratory study. In Proceedings of the 34th
International Conference on Software Engineering (ICSE). IEEE, 266-276. DOI:
https://doi.org/10.1109/ICSE.2012.6227187

[16] Robert B. Watson, Mark Stamnes, Jacob Jeannot-Schrieder, and Jan H. Spyri-
dakis. 2013. API Documentation and Software Community Values: A Survey
of Open-Source API Documentation. In: Proceedings of the 31st ACM Interna-
tional Conference on Design of Communication (SIGDOC 13), ACM, 165-174. DOI:
https://doi.org/10.1145/2507065.2507076

[17] Sebastian Baltes, Christoph Treude, and Martin P. Robillard. 2020. Contextual
Documentation Referencing on Stack Overflow. IEEE Trans. Softw. Eng. Advance
online publication. DOI: https://doi.org/10.1109/TSE.2020.2981898

[18] Steven Clarke. 2007. What is an end user software engineer? In: Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. Retrieved from
http://drops.dagstuhl.de/opus/volltexte/2007/1080/.

[19] Hans van der Meij, and John M. Carroll. 1995. Principles and heuristics for
designing minimalist instruction. Tech. Commun. 42, 2, 243–261.

[20] Jonathan Sillito and Andrew Begel, 2013. App-directed learning: An exploratory
study. In Proceedings of 6th International Workshop on Cooperative and Human
Aspects of Software Engineering.IEEE, 81–84. DOI: https://doi.org/10.1109/CHASE.
2013.6614736

[21] Andrew J. Ko and Yann Riche. 2011. The Role of Conceptual Knowledge in API
Usability. In Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC).IEEE, 173-176. DOI: https://doi.org/10.1109/VLHCC.
2011.6070395

[22] Mary Beth Rosson and John M. Carroll. 1996. The reuse of uses in Smalltalk
programming. ACM Trans. Comput.-Hum. Interact. 3, 3 (September 1996), 219-
253. DOI: https://doi.org/10.1145/234526.234530

[23] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. 2004. An ethno-
graphic study of copy and paste programming practices in OOPL. In Proceedings
of the 2004 International Symposium on Empirical Software Engineering (ISESE
’04).IEEE, 83-92. DOI: https://doi.org/10.1109/ISESE.2004.1334896

[24] Kirk St.Amant and Lisa Meloncon. 2016. Reflections on research: Examining
practitioner perspectives on the state of research in technical communication.
Tech. Commun. 63, 4, 346-364.

[25] John T. Guthrie, Stan Bennett, and Shelley Weber. 1991. Processing procedural
documents. A cognitive model for following written directions. Educ. Psychol.
Rev. 3, 3 (September 1991), 249-265. DOI: https://doi.org/10.1007/BF01320078

[26] Tom Johnson, n.d. What is a REST API? [blog post]. Retrieved from https://
idratherbewriting.com/learnapidoc/docapis_what_is_a_rest_api.html.

[27] R Core Team. 2019. R: A language and environment for statistical computing
[Computer software manual]. Vienna, Austria. Retrieved from https://www.R-
project.org/

[28] Harald Baayen, Doug J. Davidson, and Douglas M. Bates. 2008. Mixed-effects
modeling with crossed random effects for subjects and items. J. Mem. Lang. 59, 4
(November 2008), 390-412. DOI: https://doi.org/10.1016/j.jml.2007.12.005

[29] Douglas M. Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting
linear mixed-effects models using lme4. J. Stat. Softw. 67, 1, 1-48. DOI: https:
//doi.org/10.18637/jss.v067.i01

[30] Florian T. Jaeger. 2008. Categorical data analysis. Away from ANOVAs (transfor-
mation or not) and towards logit mixed models. J. Mem. Lang. 59, 4 (November
2008), 434-446. DOI: https://doi.org/10.1016/j.jml.2007.11.007

[31] Laura Winther Balling. 2008. A brief introduction to regression designs and
mixed-effects modelling by a recent convert. In: Susanne Göpferich, Arnt Lykke
Jakobsen and IngerM.Mees (Ed.): Looking at eyes. Eye-tracking studies of reading
and translation processing. Frederiksberg: Samfundslitteratur Press (Copenhagen
Studies in Language, 36), 175-192.

[32] Laura Winther Balling. 2018. No effect of writing advice on reading compre-
hension. J. Tech. Writ. Commun. 48, 1 (January 2018), 104-122. DOI: https:
//doi.org/10.1177/0047281617696983

[33] Michael Meng. 2019. Effects of visual signaling in screenshots: an eye tracking
study. Tech. Commun. 66, 4, 396-411.

[34] Hannes Matuschek, Reinhold Kliegl, Shravan Vasishth, Harald Baayen, and Dou-
glas M. Bates. 2017. Balancing Type I error and power in linear mixed models. J.
Mem. Lang. 94, (June 2017), 305-315. DOI: https://doi.org/10.1016/j.jml.2017.01.
001

[35] Russell Lenth. 2019. Estimated marginal means, aka least-squares means. R pack-
age version 1.3.5.

https://doi.org/10.1109/52.676963
http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://www.drdobbs.com/windows/measuring-api-usability/184405654
https://doi.org/10.1145/2896587
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1109/VLHCC.2006.32
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/978-3-642-00427-8_6
https://doi.org/10.1007/978-3-642-00427-8_6
https://doi.org/10.1145/3358931.3358937
http://blog.ninlabs.com/2013/03/api-documentation/
https://doi.org/10.1109/CSMR.2003.1192406
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1177/0047281617721853
https://doi.org/10.1177/0047281617721853
https://doi.org/10.1109/ICSE.2012.6227187
https://doi.org/10.1145/2507065.2507076
https://doi.org/10.1109/TSE.2020.2981898
http://drops.dagstuhl.de/opus/volltexte/2007/1080/
https://doi.org/10.1109/CHASE.2013.6614736
https://doi.org/10.1109/CHASE.2013.6614736
https://doi.org/10.1109/VLHCC.2011.6070395
https://doi.org/10.1109/VLHCC.2011.6070395
https://doi.org/10.1145/234526.234530
https://doi.org/10.1109/ISESE.2004.1334896
https://doi.org/10.1007/BF01320078
https://idratherbewriting.com/learnapidoc/docapis_what_is_a_rest_api.html
https://idratherbewriting.com/learnapidoc/docapis_what_is_a_rest_api.html
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.jml.2007.11.007
https://doi.org/10.1177/0047281617696983
https://doi.org/10.1177/0047281617696983
https://doi.org/10.1016/j.jml.2017.01.001
https://doi.org/10.1016/j.jml.2017.01.001

Optimizing API Documentation SIGDOC ’20, October 03, 04, 2020, Denton, TX, USA

[36] Andrew J, Ko, ThomasD. LaToza, andMargaretM. Burnett. 2015. A practical guide
to controlled experiments of software engineering tools with human participants.
Empir. Softw. Eng. 20, 1 (February 2015), 110-141. DOI: https://doi.org/10.1007/
s10664-013-9279-3

[37] John Sweller, Paul Ayres, and Slava Kalyuga. 2011. The Expertise Reversal Effect.
In: John Sweller, Paul Ayres, and Slava Kalyuga (Ed.): Cognitive Load Theory.

New York, Dordrecht, Heidelberg, London: Springer, 155-170. DOI: https://doi.
org/10.1007/978-1-4419-8126-4_12

[38] James R. Lewis. 2019. Measuring perceived usability: SUS, UMUX, and CSUQ
ratings for four everyday products. Int. J. Hum-Comput. Int. 35, 15, 1404-1419.
DOI: https://doi.org/10.1080/10447318.2018.1533152

https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/978-1-4419-8126-4_12
https://doi.org/10.1007/978-1-4419-8126-4_12
https://doi.org/10.1080/10447318.2018.1533152

	Abstract
	1 Introduction
	2 Literature Review
	2.1 Research on API documentation
	2.2 Guidelines for API documentation design
	2.3 Research Questions

	3 Methods
	3.1 Study Design and Materials
	3.2 Participants
	3.3 Procedure
	3.4 Data Analysis
	3.5 Results

	4 Discussion
	5 Conclusions
	5.1 Limitations
	5.2 Future Research

	Acknowledgments
	References

